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Assessing Individual VR Sickness
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Abstract—Recently, VR sickness assessment for VR videos
is highly demanded in industry and research fields to address
VR viewing safety issues. Especially, it is difficult to evaluate
VR sickness of individuals due to individual differences. To
achieve the challenging goal, we focus on deep feature fusion of
sickness-related information. In this paper, we propose a novel
deep learning-based assessment framework which estimates VR
sickness of individual viewers with VR videos and corresponding
physiological responses. We design the content stimulus guider
imitating the phenomenon that humans feel VR sickness. The
content stimulus guider extracts a deep stimulus feature from a
VR video to reflect VR sickness caused by VR videos. In addition,
we devise the physiological response guider to encode physiolog-
ical responses that are acquired while humans experience VR
videos. Each physiology sickness feature extractor (EEG, ECG,
and GSR) in the physiological response guider is designed to suit
their physiological characteristics. Extracted physiology sickness
features are then fused into a deep physiology feature that
comprehensively reflects individual deviations of VR sickness.
Finally, the VR sickness predictor assesses individual VR sickness
effectively with the fusion of the deep stimulus feature and
the deep physiology feature. To validate the proposed method
extensively, we built two benchmark datasets which contain
360-degree VR videos with physiological responses (EEG, ECG,
and GSR) and SSQ scores. Experimental results show that the
proposed method achieves meaningful correlations with human
SSQ scores. Further, we validate the effectiveness of the proposed
network designs by conducting analysis on feature fusion and
visualization.

Index Terms—VR sickness assessment, individual VR sickness,
VR video, physiological response.

I. INTRODUCTION

V IRTUAL Reality (VR) content (e.g. 360-degree video)
has attracted attention in various fields such as entertain-

ment, health care, and education with providing immersive ex-
perience to viewers [1]–[3]. However, as the VR environment
expands, concerns over the safety of viewing VR content are
rising. Symptoms containing headache, dizziness, and focusing
difficulty can be triggered when viewing VR content [4], [5].
Generally, 80% to 95% of people feel such cybersickness (i.e.,
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Fig. 1. Overview of the proposed individual VR sickness assessment. The
proposed method takes a VR video and corresponding physiological responses
to quantify VR sickness of individuals.

VR sickness) when they experience VR content [6]. In order
to handle VR sickness for VR content creation and viewing, it
is necessary to quantify VR sickness induced by VR content.

Recent studies have proposed VR sickness assessment meth-
ods for VR videos [7]–[12]. These methods extracted spatio-
temporal features to assess VR sickness induced by VR videos.
However, these methods for assessing VR sickness did not take
into account deviations among individual viewers. Individuals
experiencing same VR video can feel different levels of VR
sickness. Thus, it is needed to assess VR sickness of individual
viewers to guide view-safe VR content for specific viewers.

There were physiological studies investigating trends in
physiological responses like electroencephalography (EEG),
electrocardiogram (ECG), and galvanic skin response (GSR)
due to experiencing VR sickness [13]–[26]. Some studies tried
to verify the relationship between physiological response and
VR sickness [19]–[23]. Other works exploited physiological
responses to predict VR sickness [24]–[26]. However, these
methods mainly use only physiological responses without
considering VR content together in evaluating VR sickness.
VR content is the stimulus for VR sickness of viewers.

In this paper, we propose a novel stimulus-response fusion
network which estimates individual VR sickness through the
fusion of accessible information related to VR sickness. The
proposed network exploits both VR videos and physiological
responses to encode VR sickness caused by VR videos and
individual deviations in predicting VR sickness. As shown in
Fig. 1, the proposed deep network consists of three main parts:
a content stimulus guider, a physiological response guider, and
a VR sickness predictor. This paper is an extension of the
preliminary work presented in IEEE ICIP’19 [27]. Compared
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to the preliminary work, this paper includes changes in the
physiological response guider, datasets, and experiments. The
sickness feature extractor in the physiological response guider
has designated network structures for each physiological re-
sponse (EEG, ECG, and GSR) with the consideration of each
response characteristic. Note that the preliminary work [27]
has the same sickness feature extractor for all physiological re-
sponses (EEG, ECG, and GSR). We built the extended bench-
mark datasets including VRSA DB-Shaking (newly built) and
VRSA DB-FR (subject extended version of [27]). Further, we
additionally conduct comprehensive experiments with ablation
studies for the deep feature fusion on two benchmark datasets.

The content stimulus guider is designed to effectively ac-
cumulate visual factors that are influential in VR sickness
arousal such as acceleration and rapid turning (i.e., exceptional
motions). The content stimulus guider includes a sensory
mismatch detector and a stimulus context extractor. The pur-
pose of the sensory mismatch detector is to extract mismatch
features between target stimulus video and comfort stimulus
video that does not induce high-level VR sickness. The sensory
mismatch detector is based on the neural mismatch theory [10]
which explains that VR sickness can occur when perceived
sensory information does not correspond with expected sen-
sory information. The stimulus context extractor generates a
deep stimulus feature with the original video sequences and
mismatch features drawn from the sensory mismatch detector.
The deep stimulus feature represents VR sickness caused by
a VR video that is considered as sickness-inducing stimulus.

The physiological response guider extracts individual sick-
ness features with physiological responses (EEG, ECG, and
GSR). The EEG signal is encoded for extracting a sickness-
related deep EEG feature. For effectively encoding the EEG
signal, we consider the physiological studies [13]–[15] that ex-
plain specific frequency bands are related to the VR sickness.
The ECG signal is also encoded for extracting an ECG deep
feature based on the physiological studies [18], [19] about
nervous system-related metric, RR interval. The GSR signal
is encoded by considering the tonic and phasic characteristics
of response [19], [28]. Then, the deep EEG, ECG, and GSR
features are integrated to create a fused deep physiology fea-
ture. The deep physiology feature reflects individual sickness
characteristics.

Finally, the VR sickness predictor predicts individual simu-
lation sickness questionnaires (SSQ) score by fusing the deep
stimulus feature with the deep physiology feature. To this
end, individual VR sickness can be predicted with individual
characteristics in context of VR sickness tendency induced by
VR videos.

To validate the proposed method, we newly built two
benchmark datasets that consist of 360-degree VR video with
corresponding SSQ scores and physiological responses (EEG,
ECG, and GSR). The performance of the proposed method is
evaluated with the human SSQ scores of the datasets.

The major contributions of the paper are as follows.

• We introduce a novel deep learning framework that pre-
dicts individual VR sickness with VR videos and phys-
iological responses. This is the first work that assesses

individual VR sickness considering individual deviation
with stimulus context.

• We propose a content stimulus guider and a physio-
logical response guider which extract stimulus sickness
tendency and individual sickness characteristics, respec-
tively. These guiders are designed with deep neural net-
works based on the human physiological characteristics
for effectively representing sickness-inducing features.

• For evaluation of the proposed model, we built two
VR sickness assessment datasets by conducting extensive
subject experiments. The assessment datasets contain
360-degree video data with corresponding SSQ scores
and physiological signals (EEG, ECG, and GSR).

II. RELATED WORK

A. Content-based VR sickness Assessment

In the quality assessment area, there have been research
works to measure the quality of visual content [29]–[40]. In
particular, several works addressed VR content-based quality
assessment with the increasing interest of virtual reality [41]–
[50]. In [44], a visual quality assessment method for 360-
degree videos was proposed in consideration of pixel distortion
in a panorama. The authors of [45] proposed a quality assess-
ment method for 360-degree images by learning the positional
and visual features with the guidance of human perceptual
characteristics. The authors of [47] introduced a visual quality
assessment method for 360-degree video considering the joint
effect of judder, visual masking, and picture quality. In [48], a
graph convolution network was utilized with a spatial viewport
graph to assess 360-degree image quality. The authors of [49]
introduced a model to connect the perceptual quality of a
compressed viewport video with spatial, temporal, amplitude,
and resolution. In [50], viewing conditions and behaviors were
investigated to assess quality of 360-degree images.

Recently, VR content-based VR sickness assessment meth-
ods have been introduced to deal with viewing safety issues
of VR videos [7]–[12]. In [7], the authors proposed deep
learning-based method to predict VR sickness considering
exceptional motions in VR videos. They utilized deep gen-
erative model that observes only normal videos with non-
exceptional motions at training phase. At testing phase, this
generative model could not create scenes with exceptional
motions that cause high level of VR sickness. They utilized
the difference between the original video and the generated
video to investigate the correlation with the VR sickness.
In [8], a deep network that consists of a generative model
and an additional VR sickness regressor was proposed for
quantifying VR sickness level. Compared to [7], this method
further regressed the difference between the original video and
the generated video to the simulation sickness questionnaires
(SSQ) [51] score. In [9], VR sickness was assessed with the
consideration of differences between perceived motion and
physical motion. This work utilized perceptual motion feature
and statistical content feature to estimate VR sickness. In [10],
VR sickness assessment method was introduced for exploiting
VR sickness features related to disparity and velocity of VR
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Fig. 2. Network configuration of the content stimulus guider that consists of the sensory mismatch detector and the stimulus context extractor. The sensory
mismatch detector predicts mismatch features related to inducing VR sickness. The stimulus context extractor receives a VR video and mismatch features to
the extract deep stimulus feature which represents VR sickness caused by a VR video that is considered as sickness-inducing stimulus.

videos. In [11], a deep objective assessment model was pro-
posed to address VR sickness caused by VR video resolution.
This method mainly focuses on the perception of spatial and
temporal inconsistencies to assess VR sickness. In [12], a deep
learning framework with cognitive feature regularization was
proposed to assess VR sickness. This method utilized cognitive
features related to VR content for training the network.

Different from the aforementioned VR content-based as-
sessment works, our work deals with individual deviations
when inferencing VR sickness. Individual viewers in the same
environment perceive different VR sickness levels. The pro-
posed method quantifies individual VR sickness by utilizing
physiological information (i.e., EEG, ECG, and GSR) of
individual viewers in addition to VR content.

B. Physiology-based Cybersickness Study

There have been studies to validate the relationship be-
tween physiological response and cybersickness [19]–[27],
[52], [53]. In [19], the authors researched the variations of the
physiological responses (EEG, ECG, and GSR) when viewers
experience VR content. They analyzed frequency bands of
EEG response and validated that specific frequency bands
are related to cybersickness. They observed that the peak
interval of ECG response has relationships with experiencing
VR content. They disclosed that the skin conductance level
of GSR changes while experiencing VR content. In [53],
features of power percentage from EEG were exploited to
check the severity level of cybersickness. In [52], time domain
feature extraction of EEG with Naı̈ve Bayes was adopted to
identify cybersickness. In [24], utilization of self-organizing
neural fuzzy inference network was introduced to estimate
cybersickness with EEG features. In [26], frequency band
power features of EEG was exploited with the deep neural
network to assess cybersickness for VR content.

However, such cybersickness feature extraction methods did
not place stimulus information under consideration that pre-
dominantly influences the physiological response of viewers.
Unlike these previous works, we propose a deep learning-
based model for quantifying individual cybersickness (i.e., VR

sickness) with a VR video and physiological responses to
fully exploit the sickness-related information. The proposed
model further encodes VR sickness features with content
stimulus visually. The resulting deep stimulus feature could
give adjustments to individual VR sickness prediction with
physiological information.

III. PROPOSED METHOD

Fig. 1 shows the overall process of the proposed VR
sickness assessment model. The overall network is divided into
three main parts: a content stimulus guider, a physiological
response guider, and a VR sickness predictor. Given a VR
video, the content stimulus guider outputs a deep stimulus fea-
ture that represents video characteristics as sickness-inducing
stimulus. The physiological response guider utilizes human
physiology being collected while experiencing VR videos to
extract a deep physiology feature. The deep physiology feature
reflects individual sickness characteristics. Based on the deep
stimulus feature and the deep physiology feature, the VR
sickness predictor estimates individual SSQ scores.

A. Content Stimulus Guider
Fig. 2 shows the network configuration of the content

stimulus guider. The proposed content stimulus guider consists
of two sub-parts: a sensory mismatch detector and a stimulus
context extractor. The sensory mismatch detector extracts
mismatch features between target stimulus video and comfort
video that does not induce high-level VR sickness. Utilizing
the mismatch features, the stimulus context extractor extracts
the deep stimulus feature. The viewports of 360-degree VR
videos are used as the inputs of the content stimulus guider. As
in [8], [54], we choose a center normal field-of-view (NFOV)
in a form of longitude and latitude coordinates in the spherical
domain, which corresponds to the center of the viewport.
We extract an NFOV region from a 360-degree video by
equirectangular projection [54]. We set the size of an extracted
viewport region to span 110-degree diagonal as [8].

Motion sickness could arise if expected sensory information
does not correspond with the actual sensory information,
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which is called neural mismatch [55]. The neural mismatch is
significant when people experience fast acceleration and rapid
rotation (i.e., exceptional motions) because they do not often
experience exceptional motions in their daily lives. Even for a
video with large motion, if the motion contains constant direc-
tion and speed, the VR sickness of viewers can be moderate
or slight. The perception of VR sickness is more related to the
acceleration and rapid turning (i.e., exceptional motion not just
large motion magnitude) [8], [56]–[58]. Therefore, to capture
the distance from normal motion patterns, instead of extracting
exceptional motion features, we take the way of learning the
tolerance of human motion perception. For this purpose, the
sensory mismatch detector in the content stimulus guider is
trained with only non-exceptional motion videos for learning
the tolerance of human motion perception. Then, the sensory
mismatch detector can capture the mismatch feature caused
by exceptional motion at inference time.

Based on this neurobiological observation, the sensory
mismatch detector is designed for encoding mismatch fea-
tures with expecting a future frame as shown in Fig. 3.
The sensory mismatch detector contains a visual expectation
generator. The visual expectation generator receives N frames
It−N , · · · , It−1 to create the next frame Ît ∈ R224×224×3.
In this case, N = 11. In our brain, a given visual stimulus
is perceived in about 150–200ms before we manually react
to the stimulus [59]. For a video with 60Hz, 11 frames
correspond to 183ms, which is a proper time to affect the
human visual perception system about recognizing motion
sickness. The visual expectation generator consists of ConvL-
STMs [60] layers and DeConvLSTMs layers. DeConvLSTM
has a structure in which the convolution of ConvLSTM is
replaced with deconvolution [61]. Imitating the human normal
experience, the visual expectation generator is pre-trained with
videos [8] including only non-exceptional motions. By doing
so, the generated frame has a large difference from the original

frame for the VR video that could induce VR sickness with
exceptional motions. To generate a desirable next frame, a
pixel-wise generation loss is defined for training. Let G denote
the generator function. The generation loss can be written as

Lgen =
1

K

∑
t∈batch

‖G(It−N , ..., It−1)− It‖22, (1)

where K is a mini batch size at training phase. After training
the visual expectation generator, the sensory mismatch detector
takes sequence (It−N , · · · , It) to create a mismatch feature Mt

that represents visual sensory conflict between expected and
actual information. Note that the sensory mismatch detector
is first pre-trained and the weights are fixed. The mismatch
feature Mt is defined as follows.

Mt = |G(It−N , ..., It−1)− It|. (2)

To consider the overall tendency of a VR video, we divide
temporal range into three sections as shown in Fig. 2. At
training time, we randomly sample original video sequence
Ii, · · · , Ii+N−1(i = t1, t2, t3) and corresponding mismatch
features Mi, · · · ,Mi+N−1(i = t1, t2, t3) for each section. By
randomly sampling sequences, it has the effect of mitigating
overfitting with diversified training combination. A visual
encoder and a mismatch encoder takes the original sequences
and mismatch features, respectively to extract visual context
and visual mismatch of a VR video. The visual encoder and the
mismatch encoder encode spatio-temporal information with
3D-Conv layers [62] that include temporal axis kernel in
addition to 2D-spatial kernel. Finally, global context encoder
receives those features to aggregate overall context of a VR
video and outputs the deep stimulus feature. The deep stimulus
feature fs ∈ R64 represents VR sickness induced by a VR
video that is considered as sickness-inducing stimulus. Note
that the midst frames of each section are sampled to extract
the deep stimulus feature at testing time.

B. Physiological Response Guider

Fig. 4 shows network configuration of the physiological
response guider. It takes individual characteristics into con-
sideration to estimate VR sickness. The guider is designed
to effectively extract sickness-related features based on phys-
iological characteristics of physiology [18], [19], [63]–[66].
The proposed physiological response guider consists of three
sub-parts: EEG, ECG, and GSR sickness feature extractors.
EEG, ECG, and GSR signals are acquired while watching
VR videos to output deep EEG, ECG, and GSR features,
respectively. Then, the output features are combined into the
deep physiology feature.

It is known that frequency chracteristic of EEG is related to
experiencing VR sickness [19], [63]. Considering the factor,
we design the EEG sickness feature extractor. First, a high-
pass filter with 0.5Hz cut-off and a low-pass filter with 50Hz
cut-off are applied to EEG XEEG to eliminate baseline-
drifting and muscular artifacts [24], respectively. Short-time
fourier transform (STFT) [67] is used to obtain the time-
frequency map, spectrogram XEEG ∈ R48×128×C . C in-
dicates EEG channel size that corresponds to the number
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of brain positions. The spectrogram XEEG is fed into an
EEG time domain encoder with 1D-Conv layers. These 1D-
Conv layers encode the spectrogram with the temporal axis
of XEEG. We design the frequency band attention encoder
for emphasizing important frequency band to predict VR
sickness considering the physiological studies that investigate
frequency bands of EEG has correlations with VR sickness
[19], [63]. Through the frequency band attention encoder,
five attention weights are obtained that correspond to delta
(0.2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30
Hz), and gamma (30-50 Hz) bands. The attention weight of
each band is located at corresponding frequency region of
the EEG feature map to construct a frequency band attention
map Afreq band ∈ R48×128×1. The obtained Afreq band is
elementwise multiplied to the EEG feature from the time
domain encoder. Then, the attentive EEG feature is fed into a
time-freq domain encoder including 2D-Conv layers to process
both time and frequency characteristics. The feature drawn
by the time-freq domain encoder is divided into four patches
∈ R12×8×32 in terms of temporal axis to enter the ConvLSTM
in temporal order. In this process, long-term characteristics can
be encoded through the RNN structure with feature patches.
The final deep EEG feature fEEG from EEG signal is achieved
through a 2× 2 average pool and a fully connected layer.

We design the ECG sickness feature extractor considering
RR interval indexes that are related to autonomic nervous
system [66]. To ECG XECG ∈ R60000×1, a high-pass filter
with 0.5Hz cut-off and a low-pass filter with 50Hz cut-off
are applied. Then. it passes through an ECG time domain
encoder that consists of 1D-Conv layers. The feature from the
ECG time domain encoder is fed into a multi-scale receptive
encoder. The multi-scale RR feature encoder is designed to
consider the RR interval characteristic of ECG signal, that
is related to VR sickness [18], [19]. Since RR interval-
related indexes have correlation with VR sickness, it is worth
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Fig. 5. Network configuration of the VR sickness predictor. The VR sickness
predictor combines the deep stimulus feature with the deep physiology feature
to finally predict individual SSQ scores.

encoding time domain features with various receptive fields to
include diversified RR-intervals in the ECG signal. Note that
the receptive field of convolution indicates the region of an
input that can be seen in one kernel at a time. As a result, the
ECG sickness feature extractor outputs a deep ECG feature
fECG.

We consider the phasic and tonic characteristics [64], [65]
that have correlations with motion sickness for designing the
GSR sickness extractor. To an GSR signal XGSR ∈ R60000×1,
a low-pass filter with 50Hz cut-off is applied. Then, it passes
through a time-domain encoder which consists of 1D-Conv
layers. Through this, the feature for phasic characteristic is
extracted, that is related to short-term changes of the GSR
signal. Then, a LSTM recurrently receives the phasic feature
patch ∈ R1×32 to extract tonic characteristic that is related to
long-term changes. Finally, short-term phasic and long-term
tonic features are combined with a fully connected layer to
extract a deep GSR feature fGSR.

Finally, the deep EEG, ECG, and GSR features are con-
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TABLE I
NETWORK DETAILS OF THE PROPOSED ASSESSMENT FRAMEWORK

Network Module Layer
Filter/ Stride

/ Output Channel

Content
Stimulus Guider

4*ConvLSTM
3×3/ [4*(2, 2)]

Visual Expectation
Generator

/ [16, 32, 64, 128]

4*DeConvLSTM
3×3/ [4*(2, 2)]
/ [64, 32, 16, 3]

Visual encoder 5*3D-Conv
3×3×3/ [5*(1, 2, 2)]
/ [8, 16, 32, 64, 64]

Mismatch encoder 5*3D-Conv
3×3×3/ [5*(1, 2, 2)]
/ [8, 16, 32, 64, 64]

Global Context
Encoder

1*2D-Conv 3×3/ (1, 1)/ [64]
1*FC [64]

Physiological
Response Guider

EEG
Time Domain

Encoder
3*1D-Conv

3/ [(1), (1), (2)]
/ [32, 32, 32]

EEG
Frequency Band

Attention Encoder
3*2D-Conv 3× 3/ [3*(2, 2)]

/ [16, 8, 1]

EEG
Time-Freq Domain

Encoder

3*2D-Conv 3× 3/ [(1, 1), (2, 1), (2, 2)]
/ [32, 32, 32]

1*ConvLSTM 3×3/ (1, 1)/ [32]
ECG

Time Domain
Encoder

13*1D-Conv
3/ [2*((2), (2), (2), (1), (1)),

(2), (2), (1)]
/ [8, 16, 11*(32)]

ECG
Multi-scale RR
Feature Encoder

4*1D-Conv 3/ [4*(1)]
/ [4*(32)]

GSR
Phasic Feature

Encoder
8*1D-Conv 3/ [8*(2)]

/ [8, 16, 6*(32)]

GSR
Tonic Feature

Encoder
1*LSTM [32]

catenated to aggregate EEG and ECG information. Physiology
context attention Ap ∈ R96 is applied element-wise to the
concatenated feature for emphasizing important physiological
parts in infering VR sickness. The output deep physiogy
feature fp ∈ R64 is obtained as follows

fp = FC(Ap ∗ [fEEG; fECG; fGSR]). (3)

The deep physiology feature fp reflects the physiological
characteristics related to individual VR sickness.

C. VR sickness Predictor

Fig. 5 shows the network configuration of the VR sickness
predictor. The VR sickness predictor combines the deep stim-
ulus feature fs with the deep physiology feature fp to predict
individual SSQ scores. Once fs and fp are concatenated, a
stimulus context attention is elementwise multiplied to the
concatenated feature. We design this attentive fusion to deter-
mines which part of the physiology feature to be emphasized
based on the context of specific stimulus, considering an
interplay between stimulus and physiological response. Then
the VR sickness predictor finally estimates the individual SSQ
score through fully connected layers. Let P denote the VR
sickness predictor function. The sickness score loss for training
can be represented as

LSSQ =
1

K

∑
t∈batch

‖P (fs, fp)− SSQindiv‖22, (4)

where SSQindiv is a ground truth individual SSQ score. At
training phase, LSSQ is back-propagated to overall networks

except for the visual expectation generator. The network
details of the proposed model are shown in Table I.

IV. BENCHMARK DATABASE

To validate the proposed method, we built two 360-degree
video datasets for VR sickness assessment. Each dataset
contains SSQ information [4] and corresponding physiological
signals (EEG, ECG, and GSR). Both datasets are publicly
available on online [68].

A. VR Sickness Assessment DB-Shaking (VRSA DB-Shaking)
We collected twenty 360-degree videos from YouTube and

Vimeo. The videos are represented in equirectangular pro-
jection with 3840×2160 pixels (UHD). The collected videos
include motions with camera shaking such as roller-coaster
riding, skydiving, and boating. This dataset includes 15 indi-
vidual subjects who participated in the subjective assessment
experiment for viewing such VR videos under the approval
of KAIST institutional review board (IRB). It was approved
by IRB for the purpose of developing quantitative analysis
technology for cybersickness. Based on IRB, the experiments
were conducted after receiving the subject’s consent to the
procedure. Subjects were guided to view each video (90s)
twice repeatedly. Therefore, they experience 180s viewing
time for each video. Scheme for repeating each video twice
is according to the guideline [69]. After experiencing each
video, subjects had 180s rest time. Subjects graded the VR
sickness level with the SSQ sheet [4] as [8], [23]. The SSQ
sheet is constructed to receive the degree of 16 symptoms
in 4 steps (0: None, 1: Slight, 2: Moderate, 3: Severe).
Subjects were asked to express the existence of remaining VR
sickness before experiencing the next video to minimize VR
sickness accumulation. Supplementary rest time was provided
in addition to the 180s rest time until they respond ‘None at
all’ as in [8], [10]. The obtained 16 symptoms are grouped and
shown in Table II. The partial SSQ score for each symptom
group is calculated as the sum of the scores that belong to
each symptom group. The SSQ score for each group can be
written as

SSQNau

= 9.54× (sgd + sis + ss + sn + sdc + ssa + sb),
(5)

SSQOcu

= 7.58× (sgd + sf + sh + ses + sdf + sdc + sbv),
(6)

SSQDis

= 13.92× (sdf + sn + sfh + sbv + sdeo + sdec + sv),
(7)

where ssymptom indicates the symptom score (0: None, 1:
Slight, 2: Moderate, 3: Severe) that belongs to each group. For
example, sgd represents symptom score for ‘General Discom-
fort’. Finally, the total SSQ score is obtained by combining
the three partial SSQ scores for symptom groups. The total
SSQ score is calculated as follows

SSQtotal

= 3.74× (
1

9.54
SSQNau +

1

7.58
SSQOcu +

1

13.92
SSQDis).

(8)

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 05,2022 at 07:48:03 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2021.3103544, IEEE
Transactions on Circuits and Systems for Video Technology

7

TABLE II
VR SICKNESS-RELATED SYMPTOMS ACCORDING TO 16-ITEM SSQ [4]

No. Symptoms
Symptom Group

Nausea Oculomotor Disorientation

1 General Discomfort 3 3

2 Fatigue 3

3 Headache 3

4 Eye Strain 3

5 Difficulty Focusing 3 3

6 Increased Salivation 3

7 Sweating 3

8 Nausea 3 3

9 Difficulty Concentrating 3 3

10 Fullness of Head 3

11 Blurred Vision 3 3

12 Dizzy (Eyes Open) 3

13 Dizzy (Eyes Closed) 3

14 Vertigo 3

15 Stomach Awareness 3

16 Burping 3

We use this total SSQ score of each individual as SSQindiv

in our model. In the subject experiments, the outliers were
considered as unreliable cases due to contamination of psy-
chophysical and physiological data. We excluded the outlier
subjects in case of showing drowsiness or no response to all
stimuli (i.e., All ratings are “None” for all stimuli) during the
experiments as in [8], [70], [71]. After removing two outliers,
VRSA DB-Shaking consists of 15 subjects.

The motion of each subject was small and negligible when
they view the videos. Because subjects concentrated their
gaze in a similar direction because 360-degree videos used
in our experiments have movement in certain directions [8],
[72]. Head mounted display, PIMAX 5K+ was used to show
videos. Its display resolution is 5120×1440, maximum display
frame rate is 144 Hz, and maximum FOV is 200-degree.
Physiological signals (EEG, ECG, and GSR) were obtained
while experiencing the videos. EMOTIV EPOC+ was used to
acquire the 14-channel EEG, and Cognionics AIM was used
to obtain ECG and GSR. The EEG device has an acquisition
sampling rate of 128 Hz, and ECG/GSR devices have a
sampling rate of 500Hz.

B. VR Sickness Assessment DB-Frame Rate (VRSA DB-FR)

The constructed VRSA DB-FR is the subject-increased
version of the preliminary DB [27]. The dataset contains
twenty 360-degree videos with equirectangular UHD resolu-
tion. There are two types of frame rates (10Hz, 60Hz) with
various motions such as mountain biking, landscape scene, and
car driving. Videos with exceptional motion and low frame
rate could induce cybersickness [8], [22], [73]. VRSA DB-
FR was built to include various levels of VR sickness caused
by VR video with exceptional motion and low frame rate.
The dataset includes 25 individual subjects who participated
in the subjective assessment for viewing such videos under

TABLE III
PERFORMANCE COMPARISONS FOR INDIVIDUAL VR SICKNESS

PREDICTION ON VRSA DB-SHAKING.

VRSA DB-Shaking

Method PLCC SROCC RMSE

Skin Conductance Level Feature [75]
-based Method 0.314 0.308 43.615

Peak Interval Feature [76]
-based Method 0.340 0.237 46.469

Band Power Feature [26]
-based Method 0.492 0.352 35.157

Proposed Method 0.767 0.706 25.946

TABLE IV
PERFORMANCE COMPARISONS FOR INDIVIDUAL VR SICKNESS

PREDICTION ON VRSA DB-FR.

VRSA DB-FR

Method PLCC SROCC RMSE

Skin Conductance Level Feature [75]
-based Method 0.390 0.295 34.933

Peak Interval Feature [76]
-based Method 0.379 0.298 34.712

Band Power Feature [26]
-based Method 0.476 0.326 33.862

Proposed Method 0.837 0.719 20.350

the approval of KAIST institutional review board (IRB). The
overall procedure of the subjective assessment is the same with
VRSA DB-Shaking. After removing an outlier, VRSA DB-FR
consists of 25 subjects. Ultra-wide curved display, LG 34UC89
was used to show videos. Its display resolution is 2560×1080,
and the maximum display frame rate is 144 Hz. Viewing
distance is controlled to provide immersive experiences with
HMD level 110-degree FOV [74]. Physiological signals (EEG,
ECG, and GSR) were obtained. Cognionics Quick-30 was
used for 29-channel EEG signal acquisition, and Cognionics
AIM was used for ECG and GSR signals acquisition. All the
acquisition devices have the same sampling rate of 500 Hz.

V. EXPERIMENTS

A. Implementation Details

For each video, the physiological signals are 180s long.
The intermediate 120s of each physiological signal is used
to remove the noise of starting and end. Data augmentation is
performed by shifting the extracted 120s region by 5 seconds
on the time axis. As a result, the training set is augmented 9
times time-wise. We use Adam [77] to optimize the proposed
network with a learning rate of 0.0002 and a batch size of
16. The experiments are conducted on a server system with
Intel Xeon Scalable Silver 4114 CPU @ 2.20 GHz, 128 GB
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TABLE V
INDIVIDUAL VR SICKNESS PREDICTION PERFORMANCES ACCORDING TO INDIVIDUAL SUBJECTS ON VRSA DB-SHAKING AND VRSA DB-FR.

DB Metrics
# Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VRSA DB
-Shaking

PLCC 0.94 0.85 0.91 0.56 0.64 0.89 0.99 0.55 0.67 0.61 0.71 0.92 0.79 0.68 0.84

SROCC 0.84 0.77 0.85 0.54 0.64 0.83 1.00 0.35 0.57 0.44 0.63 0.80 0.78 0.74 0.66

(a)

DB Metrics
# Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

VRSA DB
-FR

PLCC 0.71 0.93 0.91 0.87 0.94 0.94 0.87 0.80 0.94 0.93 0.78 0.71 0.91 0.66 0.94 0.99 0.86 0.84 0.85 0.74 0.97 0.69 0.84 0.84 0.93

SROCC 0.72 0.92 0.80 0.73 1.00 0.95 0.78 0.78 0.94 0.84 0.50 0.70 0.78 0.67 0.97 0.98 0.76 0.74 0.86 0.73 0.98 0.66 0.76 0.71 0.92

(b)

memory, and Nvidia TITAN XP GPU. We implement the
proposed model with TensorFlow [78].

B. Performance Evaluation

We conduct 5-fold cross-validation [79] with the benchmark
datasets. The 5-fold is separated based on the VR videos so
that both video and physiology in the training set and the test
set do not over-lap at all. Pearson linear correlation coefficient
(PLCC), spearman rank order correlation coefficient (SROCC),
and root mean square error (RMSE) are used as performance
evaluation metrics. Note that SSQ score has a range of [0,
235.62] [4].

1) Performance comparison on VRSA DB-Shaking: Table
III shows individual SSQ prediction performance comparisons
with other methods on VRSA DB-Shaking. The skin conduc-
tance level feature-based method uses features related to tonic
characteristics of GSR (MSCL, SDSCL, and SKSCL) [75].
The peak interval feature-based method performs prediction
using the major RR interval features of ECG (MeanRR,
SDRR, pNN50, and NN50) [76]. The band power feature-
based method utilizes the frequency band power of EEG
[26]. As shown in the table, the proposed method far outper-
forms other methods with PLCC, SROCC, and RMSE eval-
uation metrics on VRSA DB-Shaking. The proposed method
achieves meaningful correlation performance of PLCC≥0.7
and SROCC≥0.7 with p-value≤0.05 on VRSA DB-Shaking.
For reference, the preliminary version [27] of this work shows
PLCC: 0.739, SROCC: 0.617, and RMSE: 30.372 on VRSA
DB-Shaking. The proposed method of the current version
shows better results compared to the preliminary model [27].

2) Performance comparison on VRSA DB-FR: Table IV
shows individual SSQ performance comparisons with other
methods on VRSA DB-Shaking (a) and VRSA DB-FR (b).
As in the case of VRS DB-Shaking, the proposed method
is compared with the skin conductance level feature-based
method, the peak interval feature-based method, and the
band power feature-based method. The performance results
show that the proposed method far surpasses other predic-
tion methods with PLCC, SROCC, and RMSE evaluation
metrics. Similarly, meaningful correlation is obtained with
PLCC≥0.8 and SROCC≥0.7 with p-value≤0.05 on VRSA

DB-FR. Note that the EEG acquisition device in VRSA DB-
FR is the sophisticated one with more brain channels and
higher sampling rates compared to VRSA DB-shaking. Thus,
the performances of it are higher than those of VRSA DB-
Shaking. For reference, the preliminary version [27] of this
work shows PLCC: 0.806, SROCC: 0.660, and RMSE: 23.893
on VRSA DB-FR. The current version shows better results
compared to the preliminary one [27].

3) Performance evaluation according to individuals: Table
V shows the results for individual correlation experiments
(PLCC and SROCC) on VRSA DB-Shaking and VRSA DB-
FR. As shown in the Table, the proposed method can as-
sess VR sickness at individual-level. Overall performances of
VRSA DB-FR are better than those of VRSA DB-Shaking
because EEG of VRSA DB-FR includes more brain channels
and higher sampling rates than that of VRSA DB-Shaking.
Note that subjects of VRSA DB-Shaking and VRSA DB-FR
are not identical, ‘# Subject’ denotes the order of subjects of
each dataset.

4) Computational Complexity: The proposed model size (#
of parameters) is 3.28M, which is practical considering typical
deep learning networks such as VGG 16 (138M) or ResNet-50
(23M). The inference time of the proposed model is 1.729s
for 3min data in case of using a single TITAN XP GPU.

C. Ablation Study
We perform ablation studies to validate the effectiveness

of the proposed network designs according to sickness-related
features. The experiments are constructed based on ablating
the input data types that include the physiological responses
(EEG, ECG, and GSR) and the VR video. Table VI, Table
VII, Table VIII, and Table IX show the ablation study results.

1) Effects of physiological response features: We validate
the effects of physiological response features (EEG, ECG,
and GSR) as shown in Table VI and VII. In this case, each
physiological response feature is used to predict the individual
VR sickness without VR video inputs. Note that each feature
passes through same FC layers to predict SSQ. We analyze the
impact of network designs by ablating them on VRSA DB-
Shaking as shown in Table VI. Predicting VR sickness using
the EEG signal shows the best performance among physiologi-
cal signals. Similar to the VRSA DB-Shaking case, we conduct
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TABLE VI
EFFECTS OF THE PHYSIOLOGICAL RESPONSE FEATURES ON INDIVIDUAL VR SICKNESS PREDICTION FOR VRSA DB-SHAKING.

Physiological Response Features of the Proposed Method VRSA DB-Shaking

Galvanic Skin Response
(GSR) Feature

Electrocardiogram
(ECG) Feature

Electroencephalography
(EEG) Feature PLCC SROCC RMSE

3 7 7 0.415 0.340 38.453

7 3 7 0.634 0.479 33.096

7 7 3 0.653 0.517 32.414

3 3 3 0.710 0.584 31.798

TABLE VII
EFFECTS OF THE PHYSIOLOGICAL RESPONSE FEATURES ON INDIVIDUAL VR SICKNESS PREDICTION FOR VRSA DB-FR.

Physiological Response Features of the Proposed Method VRSA DB-FR

Galvanic Skin Response
(GSR) Feature

Electrocardiogram
(ECG) Feature

Electroencephalography
(EEG) Feature PLCC SROCC RMSE

3 7 7 0.424 0.338 34.867

7 3 7 0.706 0.544 28.485

7 7 3 0.773 0.582 24.551

3 3 3 0.779 0.593 23.830

TABLE VIII
INDIVIDUAL VR SICKNESS PREDICTION PERFORMANCES ACCORDING TO

THE STIMULUS FEATURE OF VR VIDEO ON VRSA DB-SHAKING.

VRSA DB-Shaking

Method PLCC SROCC RMSE

Proposed Method
(w/o Stimulus Feature of VR Video) 0.710 0.584 31.798

Proposed Method
(w/ Stimulus Feature of VR Video) 0.767 0.706 25.946

ablation study for the proposed method on VRSA DB-FR as
shown in Table VI. The VR sickness prediction model using
EEG signal performs better than other physiological signal-
based models. Since the sophisticated EEG acquisition device
is used with more brain channels in VRSA DB-FR, the EEG
model of VRSA DB-FR far outperforms other physiological
signal models. Finally, The fusion of all physiological signals
shows better performances for predicting individual VR sick-
ness on both VRSA DB-Shaking and VRSA DB-FR. These
results show that the proposed fusion of multiple physiological
responses predicts VR sickness more effectively.

2) Effects of stimulus feature of VR video: To validate the
effectiveness of the VR video inputs, we conduct ablation
experiments according to the stimulus feature of VR video on
VRSA DB-Shaking and VRSA DB-FR. The fusion model of
all physiological responses (EEG, ECG, and GSR) is used as
the baseline. As shown in Table VIII, using the stimulus fea-
ture of VR video contributes to the performance improvement
by 0.057 for PLCC, 0.122 for SROCC, and 5.852 for RMSE

TABLE IX
INDIVIDUAL VR SICKNESS PREDICTION PERFORMANCES ACCORDING TO

THE STIMULUS FEATURE OF VR VIDEO ON VRSA DB-FR.

VRSA DB-FR

Method PLCC SROCC RMSE

Proposed Method
(w/o Stimulus Feature of VR Video) 0.779 0.593 23.830

Proposed Method
(w/ Stimulus Feature of VR Video) 0.837 0.719 20.350

on VRSA DB-Shaking. Similarly, the VR video contributes
to the performance by 0.058 for PLCC, 0.126 for SROCC,
and 3.480 for RMSE on VRSA DB-FR as shown in Table IX.
The deep stimulus feature highly contributes to the individual
VR sickness prediction on both datasets. These results show
that the proposed content stimulus guider properly encodes
the context of VR sickness tendency induced by VR videos
to refine predictions from physiological responses. Note that
the model with only stimulus features cannot be performed
to predict individual SSQ of individual subjects. Since the
stimulus features extracted from VR videos do not include any
individual information for each subject, the deviations among
individuals cannot be reflected at all.

D. Visualization of Content Stimulus Guider

Fig. 6 shows the visualization results of the mismatch
features from the content stimulus guider (refer to Fig. 3). It
shows difference maps between original frames and generated
frames from the visual expectation generator. As shown in the
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Landscape Scene
(Average SSQ : 13.71) 

Driving Scene
(Average SSQ : 40.89) 

Roller Coaster Scene
(Average SSQ : 58.09) 

Shaking Bike Scene
(Average SSQ : 61.08) 

Landscape Scene
(Average SSQ : 19.69) 

Fig. 6. Visualization results of the mismatch features from the content stimulus guider. The first column indicates example scenes of the videos while other
columns indicate corresponding mismatch features. The mismatch features are obtained from differences between the original frames and predicted frames
from the visual expectation generator.

table, mismatch features are not highly activated for the video
with slow-moving landscape scenes that trigger low levels
of VR sickness. In contrast, the mismatch maps are highly
activated for biking scenes or roller coaster scenes that contain
a lot of exceptional motions. Such videos with exceptional
motions induce high levels of VR sickness. As the average
SSQ value increases, the degree of activation of the mismatch
map also tends to increase. These results show that the content
stimulus guider could properly capture the sickness-inducing
features from the VR video visually.

E. Analysis of Attention on Fused Feature

The physiology context attention (refer to Fig. 4) in the
physiological response guider has 96 values, of which 32
values represent each attention for EEG, ECG, and GSR. The
average values of each physiology context attention are 0.52
for EEG, 0.44 for ECG, and 0.39 for GSR on VRSA DB-
FR. As we address in Section 5.B, the order of physiological
response types that work effectively in predicting VR sickness
is EEG, ECG, and GSR. Similarly, the order of attention
magnitude is also EEG, ECG, and GSR. This result shows
that the proposed network convincingly encodes physiological
responses considering the importance of physiology types in
an unsupervised way. Note that the physiology context atten-
tion part is trained without the supervision of physiological
importance.

VI. DISCUSSION

Our work mainly focuses on VR sickness prediction based
on the exceptional motion of VR content and physiological
responses. Other features like long-time watching or content
semantic (e.g., horrible content) also can cause VR sickness.
Thus, it will be worth taking into account the features for
watching time and content semantic in future research.

We built the benchmark videos which are mostly composed
of consistent scenes to prevent scene switching in a sequence.

In addition, the effect of scene switching could be mitigated in
the proposed method because our model applies the mismatch
detector to three temporally different sections of a video
(please see Fig. 2). Nevertheless, in reality, it will be worth
investigating the methods to minimize the effects of scene
switching such as applying the sensory mismatch detector to
the parts that do not include scene switching by detecting scene
switching occurrence.

There might be an interplay between the stimulus itself
and physiological response because the physiological response
is highly affected by stimulus. it would be interesting to
investigate interplay between the stimulus and physiological
response such as predicting physiological response along with
stimulus information. Given individual’s human factors (e.g.,
base-line physiological response or sensitivity factor) addition-
ally, it might be possible to predict physiological response or
individual VR sickness along with the VR stimulus.

Obtaining SSQ scores differs from obtaining visual quality
scores of a VR video. The visual quality of video is highly
related to the degree of degradation of video by compression,
noise, and so on [80]. Therefore, in the subjective assessment
experiment obtaining visual quality of video, the subjects are
generally asked to indicate the quality of the video on a con-
tinuous scale with a 5-category quality judgment (e.g., ITU-R
absolute category rating scale). On the other hand, obtaining
SSQ scores is to subjectively measure the degree of physical
symptoms caused by VR sickness. Therefore, there have been
studies measuring both SSQ scores and physiological signals
for VR sickness. Likewise in our study, the subjects were
equipped with physiological data measuring devices for EEG,
ECG, and GSR. And we explained each physical symptom
in an SSQ sheet because it is different from simple five-scale
quality judgment about overall visual quality.

VII. CONCLUSION

In this paper, we propose the novel deep neural network
for assessing individual VR sickness through deep feature
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fusion of the VR video and physiological responses. We devise
the content stimulus guider and the physiological response
guider to represent the sickness-related features effectively.
Based on the neural mismatch theory, the content stimulus
guider is designed to reflect VR sickness caused by VR
videos. The physiological response guider is designed to reflect
individual deviations of VR sickness according to the phys-
iological characteristics of human responses. Each sickness
feature of EEG, ECG, and GSR are fused to represent the
comprehensive physiology feature of individuals. By fusing
the stimulus feature and the physiology feature, the proposed
network effectively estimates individual VR sickness. We
build two benchmark datasets (VRSA DB-Shaking and VRSA
DB-FR) with extensive subject experiments. The benchmark
datasets include 360-degree VR videos with corresponding
physiological responses and human SSQ scores. We validate
the proposed method on the built datasets. As a result, the
proposed deep network achieves meaningful correlations with
human SSQ scores on both datasets. Further, we validate the
effectiveness of the proposed network designs by conducting
analysis on sickness-related deep feature fusion and feature
visualization. In this extended version, we show that the
proposed sickness feature extractor based on physiological
characteristics of each response (EEG, ECG, and GSR) is more
effective compared to the preliminary work [27]. In addition,
the proposed deep feature fusion is useful when combining
physiological responses, and especially enables significantly
improved prediction with the stimulus feature of a VR video.
Nowadays, physiology acquisition devices are being lightened
and simplified. It is even possible to measure physiological
signals with simple wearable devices (e.g., smart watch).
Therefore, the more acquisition devices are developed, the
more practical the proposed solution will be.
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doctoral researcher at École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland. His
current research interests include deep learning and
machine learning in 2D/3D/VR image processing
and computer vision, human visual perception, and

medical image processing.

Yong Man Ro (S’85-M’92-SM’98) received the
B.S. degree from Yonsei University, Seoul, Ko-
rea, and the M.S. and Ph.D. degrees from Ko-
rea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea. He was a researcher at
Columbia University, a visiting researcher at the
University of California, Irvine, CA, USA, and a re-
search fellow at the University of California, Berke-
ley, CA, USA. He was a visiting professor in the
Department of Electrical and Computer Engineering
at the University of Toronto, Canada. He is currently

a professor of the department of electrical engineering and the director of
Center for Applied Research in Artificial Intelligence (CARAI) in KAIST.
Among the years, he has been conducting research in a wide spectrum
of image and video systems research topics. Among those topics; image
processing, computer vision, visual recognition, multimodal learning, video
representation/compression, and object detection. Dr. Ro received the Young
Investigator finalist Award of ISMRM in 1992, and the year’s scientist award
(Korea), in 2003. He served as an associate editor for IEEE Signal Processing
Letters. He currently serves as an associate editor in IEEE Transactions on
Circuits and Systems for Video Technology. He served as a TPC in many
international conferences including the program chair and organized special
sessions. He is a senior member of the IEEE.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 05,2022 at 07:48:03 UTC from IEEE Xplore.  Restrictions apply. 


